Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Mater Chem B ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700289

RESUMEN

The tunable properties of stimuli-responsive copolymers or hydrogels enable their application in different fields such as biomedical engineering, tissue engineering, or even drug release. Here we introduce a new PNIPAM-based triblock copolymer material comprising a controlled amount of a novel hydrophobic crosslinker 2,4'-diacryloyloxy benzophenone (DABP) and acrylic acid (AAc) to achieve lower critical solution temperature (LCST) between ambient and body temperatures. The dual stimuli-responsive p(NIPAM-co-DABP-co-AAc) triblock copolymer material and hydrogel were synthesized, and their temperature and pH-responsive behaviors were systematically investigated. The hydrogel exhibited excellent temperature and pH-responsive properties with an LCST of around 30 °C. Moreover, the synthesized copolymer has been demonstrated to be nontoxic both in vitro and in vivo. When the hydrogel was preloaded with the model drug 5-fluorouracil (5-FU), the designed hydrogel released the drug in a temperature and pH-controlled fashion. It was observed that the prepared hydrogel has the ability to entrap 5-FU, and the loading is more than 85%. In the case of temperature-controlled release, we observed almost complete release of 5-FU at lower temperatures and sustained release behavior at higher temperatures. In addition, the hydrogel matrix was able to retard the release of 5-FU in an acidic environment and selectively release 5-FU in a basic environment. By realizing how the hydrogel properties influence the release of drugs from preloaded hydrogels, it is possible to design new materials with myriad applications in the drug delivery field.

2.
ACS Appl Mater Interfaces ; 16(17): 22326-22333, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635965

RESUMEN

Low-temperature large-area growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) is critical for their integration with silicon chips. Especially, if the growth temperatures can be lowered below the back-end-of-line (BEOL) processing temperatures, the Si transistors can interface with 2D devices (in the back end) to enable high-density heterogeneous circuits. Such configurations are particularly useful for neuromorphic computing applications where a dense network of neurons interacts to compute the output. In this work, we present low-temperature synthesis (400 °C) of 2D tungsten diselenide (WSe2) via the selenization of the W film under ultrahigh vacuum (UHV) conditions. This simple yet effective process yields large-area, homogeneous films of 2D TMDs, as confirmed by several characterization techniques, including reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and different spectroscopy methods. Memristors fabricated using the grown WSe2 film are leveraged to realize a novel compact neuron circuit that can be reconfigured to enable homeostasis.

3.
Free Radic Biol Med ; 218: 94-104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582228

RESUMEN

Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 µM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Lamina Tipo A , Membrana Nuclear , Doxorrubicina/toxicidad , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Animales , Fosforilación/efectos de los fármacos , Membrana Nuclear/metabolismo , Membrana Nuclear/efectos de los fármacos , Ratas , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Cardiotoxicidad/etiología , Línea Celular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Antibióticos Antineoplásicos/toxicidad , Masculino , Ratas Sprague-Dawley
4.
Nat Commun ; 15(1): 2334, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485722

RESUMEN

The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits. We employ statistical analysis of transient characteristics to gain insights into the memristor switching mechanism. Cycling endurance data confirms the ultra-fast switching capability of these memristors, making them attractive for next generation computing, storage, and Radio-Frequency (RF) circuit applications.

5.
Life Sci ; 341: 122489, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340979

RESUMEN

Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.


Asunto(s)
Cardiomiopatías , Distrofias Musculares , Humanos , Lamina Tipo A/genética , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/terapia , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Polímeros
6.
iScience ; 27(2): 108764, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313048

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for metabolic diseases. The bidirectional interactions between liver and gut made dysbiotic gut microbiome one of the key risk factors for NAFLD. In this study, we reported an increased abundance of Collinsella aerofaciens in the gut of obese and NASH patients living in India. We isolated C. aerofaciens from the fecal samples of biopsy-proven NASH patients and observed that their genome is enriched with carbohydrate metabolism, fatty acid biosynthesis, and pro-inflammatory functions and have the potency to increase ethanol level in blood. An animal study indicated that mice supplemented with C. aerofaciens had increased levels of circulatory ethanol, high levels of hepatic hydroxyproline, triglyceride, and inflammation in the liver. The present findings indicate that perturbation in the gut microbiome composition is a key risk factor for NAFLD.

7.
PLoS One ; 18(12): e0295839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127951

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a complex disease which is characterized by the deposition of fats in the hepatocytes. Further, it progresses to nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. The increasing prevalence of NAFLD urges to find the non-invasive predictive biomarkers. In this study, we sought to determine increased BMP8B levels as predictors for the progression of NAFLD. METHODS: In the present cross-sectional study, circulatory BMP8B levels were measured in healthy controls (n = 56), NAFL patients (n = 72) and NASH patients (n = 77) by using an ELISA kit. Human hepatic BMP8B mRNA expression was measured in the liver tissue of control and NASH patients. In addition, BMP8B expression was confirmed by immunohistochemistry analysis. Furthermore, hepatic BMP8B mRNA expression was measured in wild type (WT) mice, WT mice fed with choline deficient high fat diet (WT+CDHF), iNOS (inducible nitric oxide synthase) knockout (iNOS-/-) mice, iNOS-/- fed with CDHF diet (iNOS-/-+CDHF). RESULTS: Increased circulatory BMP8B levels and BMP8B mRNA expression in hepatic tissue were significantly higher in NASH patients as compared with the control subjects. BMP8B expression was increased parallel to the fibrosis score in the hepatic tissues of NASH patients. It was observed that increased BMP8B levels have shown a significant positive correlation between aspartate aminotransferase (r = 0.31, p = 0.005), alanine aminotransferase (r = 0.23, p = 0.045), APRI (r = 0.30, p = 0.009), and Fib-4 score (r = 0.25, p = 0.036) in NASH patients. BMP8B has maintained a significant association with NASH and shown high sensitivity (92.91%) and specificity (92.73%) in NASH patients. Furthermore, increased BMP8B mRNA expression levels were observed in iNOS-/-+CDHF mice. CONCLUSION: Our study findings confirmed that BMP8B increases with the severity of the disease and BMP8B shows potential as a non-invasive predictive biomarker to identify NAFLD progression. However, future studies should investigate circulatory BMP8B levels in a large number of patients and also its impact on liver during NAFLD progression.


Asunto(s)
Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Estudios Transversales , Hígado/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , ARN Mensajero/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-37930610

RESUMEN

Gram-positive bacteria are responsible for a wide range of infections in humans. In most Gram-positive bacteria, sortase A plays a significant role in attaching virulence factors to the bacteria's cell wall. These cell surface proteins play a significant role in virulence and pathogenesis. Even though antibiotics are available to treat these infections, there is a continuous search for an alternative strategy due to an increase in antibiotic resistance. Thus, using anti-sortase drugs to combat these bacterial infections may be a promising approach. Here, we describe a method for targeting Gram-positive bacterial infection by combining curcumin and trans-chalcone as sortase A inhibitors. We have used curcumin and trans-chalcone alone and in combination as a sortase A inhibitor. We have seen ~78%, ~43%, and ~94% inhibition when treated with curcumin, trans-chalcone, and a combination of both compounds, respectively. The compounds have also shown a significant effect on biofilm formation, IgG binding, protein A recruitment, and IgG deposition. We discovered that combining curcumin and trans-chalcone is more effective against Gram-positive bacteria than either compound alone. The present work demonstrated that a combination of these natural compounds could be used as an antivirulence therapy against Gram-positive bacterial infection.

9.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37534494

RESUMEN

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Asunto(s)
Síndrome Metabólico , Ratas , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/prevención & control , Glucemia/análisis , Glucemia/metabolismo , Lysimachia , Fructosa , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fenotipo , Aminoácidos/metabolismo , Progresión de la Enfermedad , Candida/metabolismo
10.
J Mass Spectrom ; 58(8): e4964, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37464563

RESUMEN

Phlorizin (PRZ) is a natural product that belongs to a class of dihydrochalcones. The unique pharmacological property of PRZ is to block glucose absorption or reabsorption through specific and competitive inhibitors of the sodium/glucose cotransporters (SGLTs) in the intestine (SGLT1) and kidney (SGLT2). This results in glycosuria by inhibiting renal reabsorption of glucose and can be used as an adjuvant treatment for type 2 diabetes. The pharmacokinetic profile, metabolites of the PRZ, and efficacy of metabolites towards SGLTs are unknown. Therefore, the present study on the characterization of hitherto unknown in vivo metabolites of PRZ and pharmacokinetic profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) and accurate mass measurements is undertaken. Plasma, urine, and feces samples were collected after oral administration of PRZ to Sprague-Dawley rats to identify in vivo metabolites. Furthermore, in silico efficacy of the identified metabolites was evaluated by docking study. PRZ at an intraperitoneal dose of 400 mg/kg showed maximum concentration in the blood to 439.32 ± 8.84 ng/mL at 1 h, while phloretin showed 14.38 ± 0.33 ng/mL at 6 h. The pharmacokinetic profile of PRZ showed that the maximum concentration lies between 1 and 2 h after dosing. Decreased blood glucose levels and maximum excretion of glucose in the urine were observed when the PRZ and metabolites were observed in plasma. The identification and characterization of PRZ metabolites by LC/ESI/MS/MS further revealed that the phase I metabolites of PRZ are hydroxy (mono-, di-, and tri-) and reduction. Phase II metabolites are O-methylated, O-acetylated, O-sulfated, and glucuronide metabolites of PRZ. Further docking study revealed that the metabolites diglucuronide metabolite of mono-hydroxylated PRZ and mono-glucuronidation of PRZ could be considered novel inhibitors of SGLT1 and SGLT2, respectively, which show better binding affinities than their parent compound PRZ and the known inhibitors.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Ratas , Animales , Ratas Sprague-Dawley , Hipoglucemiantes/farmacología , Espectrometría de Masas en Tándem/métodos , Transportador 2 de Sodio-Glucosa , Florizina/farmacología , Espectrometría de Masa por Ionización de Electrospray/métodos , Glucosa/metabolismo , Sodio , Cromatografía Líquida de Alta Presión/métodos
11.
Prostaglandins Other Lipid Mediat ; 169: 106766, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37479133

RESUMEN

Platelets are one of the key mediators in thrombosis as well as in the progression of many diseases. An increase in platelet activation and a decrease in platelet count is associated with a plethora of liver diseases. In non-alcoholic fatty liver disease (NAFLD), platelets are highly activated and participate in the disease progression by enhancing the pro-thrombotic and pro-inflammatory state. Some altered platelet parameters such as mean platelet volume, plateletcrits, and platelet distribution width, aspartate transaminase to platelet ratio index, liver stiffness to platelet ratio and red cell distribution width to platelet ratio were found to be associated with NAFLD disease. Further, platelet contributes to the progression of cardiovascular complications in NAFLD is gaining the researcher's attention. An elevated mean platelet volume is known to enhance the risk of stroke, atherosclerosis, thrombosis, and myocardial infarction in NAFLD. Evidence also suggested that modulation in platelet function using aspirin, ticlopidine, and cilostazol help in controlling the NAFLD progression. Future research should focus on antiplatelet therapy as a treatment strategy that can control platelet activation in NAFLD as well as its cardiovascular risk. In the present review, we have detailed the role of platelets in NAFLD and its cardiovascular complications. We further aimed to highlight the growing need for antiplatelet therapy in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Trombosis , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Plaquetas , Activación Plaquetaria , Hígado
12.
Nano Lett ; 23(7): 2952-2957, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996390

RESUMEN

Threshold switches based on conductive metal bridge devices are useful as selectors to block sneak leakage paths in memristor arrays used in neuromorphic computing and emerging nonvolatile memory. We demonstrate that control of Ag-cation concentration in Al2O3 electrolyte and Ag filament size and density play an important role in the high on/off ratio and self-compliance of metal-ion-based volatile threshold switching devices. To control Ag-cation diffusion, we inserted an engineered defective graphene monolayer between the Ag electrode and the Al2O3 electrolyte. The Ag-cation migration and the Ag filament size and density are limited by the pores in the defective graphene monolayer. This leads to quantized conductance in the Ag filaments and self-compliance resulting from the formation and dissolution of the Ag conductive filament.

13.
Mol Omics ; 19(4): 321-329, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36752683

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterised by increased blood glucose levels. Patients with T2DM have a high risk of developing atherosclerotic coronary artery disease (CAD). CAD with T2DM has a complex etiology and the understanding of the pathophysiology of coronary artery disease (CAD) in the presence of diabetes is poor. Here, we have used LC-MS/MS-based untargeted metabolomics to unveil the alterations of metabolites in the serum of South-Indian patients diagnosed with T2DM, CAD and T2DM along with CAD (T2DM-CAD) compared with the healthy subjects (CT). Using untargeted metabolomics and network-based approaches, a set of metabolites highly co-expressed with T2DM-CAD pathogenesis were identified. Our results revealed that these metabolites belong to essential pathways such as amino acid metabolism, fatty acid metabolism and carbohydrate metabolism. The candidate metabolites identified by metabolomics study are branch chain amino acids, L-arginine, linoleic acid, L-serine, L-cysteine, fructose-6-phosphate, glycerol, creatine and 3-phosphoglyceric acid, and explain the pathogenesis of T2DM-assisted CAD. The identified metabolites could be used as potential prognostic markers to predict CAD in patients diagnosed with T2DM.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Glucosa , Diabetes Mellitus Tipo 2/metabolismo , Aminoácidos , Cromatografía Liquida , Estudios de Casos y Controles , Espectrometría de Masas en Tándem
14.
Nano Lett ; 23(4): 1152-1158, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36662611

RESUMEN

Recently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 1011 and low switching voltage below 0.34 V. In addition, the switch exhibits a low insertion loss of 0.50 dB and high isolation of 23 dB across the D-band spectrum (110 to 170 GHz). Furthermore, the S21 insertion loss can be tuned through five orders of current compliance magnitude, which increases the application prospects for atomic switches. These results can enable the switch to become a key component for future reconfigurable wireless and 6G communication systems.

15.
Prog Mol Biol Transl Sci ; 192(1): 231-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36280321

RESUMEN

A number of microorganisms are co-evolved with the host, among which bacteria are the predominant organisms in the colonic site. The human microbiota contributes to various physiological functions, including the digestion and degradation of food components, harvesting of inaccessible nutrients, immune system regulation, maintenance of gut barrier function, and regulation of brain function and behavior. Microbes in the gut produce a wealth of metabolites from the exogenous dietary substances or endogenous metabolic compounds produced by the host and the resident microorganisms. These microbial-derived metabolites are the major factors in the host-microbiota cross-talk and influence the host's cardiometabolic health directly or indirectly depending on the structure and function of the microbial community. Evidence suggests that the perturbation in the composition and function of gut microbiota (referred to as gut dysbiosis) is associated with the development of several diseased conditions such as that of the gastrointestinal tract or colorectal cancer, metabolic diseases such as obesity, diabetes, immune disorders e.g. asthma, allergies, depression, anxiety and cardiometabolic disease. Several pathological conditions in the gastrointestinal tract may impair the intestinal barrier that allows translocation of bacteria and their metabolites to a remote organ such as the heart, which may ultimately be associated with systemic inflammation and the development of CVDs. In this chapter, we will discuss various gut microbiota-dependent metabolites, which have a significant role in cardiovascular diseases' pathologic processes and their risk factors. Finally, we will discuss the therapeutic potential of the gut-metabolite-heart axis as a novel target for the treatment of CVD and highlight the current updates and exciting directions for future research.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Disbiosis , Bacterias , Inflamación/complicaciones
16.
Prog Mol Biol Transl Sci ; 191(1): 187-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36270678

RESUMEN

The human gastrointestinal tract (GIT) contains a dynamic and diverse collection of bacteria, archaea, and fungi termed the "gut microbiome." The gut microbiome has a major impact on the host during homeostasis and disease. The connection between both the host and the microbiome is complex, although its manipulation may assist prevent or treating a multitude of morbidities. These microorganisms play a critical role in the host's energy metabolism and homeostasis. According to new research, the microbes in the gastrointestinal tract play a substantial role in host health, and alterations in its composition and function might lead to the emergence of metabolic disorders like non-alcoholic fatty liver disease (NAFLD). The resilience of the GIT microbial ecology and its tolerance to perturbation are robust but not ideal. Several factors may disrupt the GIT microbiome's homeostasis leading to dysbiosis, characterized by an imbalanced equilibrium and perturbations in gut homeostasis. Irritable bowel disease (IBD), malnutrition, and metabolic disorders, such as NAFLD, have been associated with the dysbiotic gut microbiome. Recent evidence suggests that utilizing medications, prebiotics, probiotics, and fecal microbiota transplantation (FMT) to manipulate the microbiome could be a viable method for treating NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/microbiología , Prebióticos , Disbiosis , Trasplante de Microbiota Fecal , Probióticos/uso terapéutico
17.
Anal Chem ; 94(39): 13315-13322, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36137231

RESUMEN

Untargeted liquid chromatography/high-resolution mass spectrometry (LC/HRMS) assays in metabolomics and exposomics aim to characterize the small molecule chemical space in a biospecimen. To gain maximum biological insights from these data sets, LC/HRMS peaks should be annotated with chemical and functional information including molecular formula, structure, chemical class, and metabolic pathways. Among these, molecular formulas may be assigned to LC/HRMS peaks through matching theoretical and observed isotopic profiles (MS1) of the underlying ionized compound. For this, we have developed the Integrated Data Science Laboratory for Metabolomics and Exposomics-United Formula Annotation (IDSL.UFA) R package. In the untargeted metabolomics validation tests, IDSL.UFA assigned 54.31-85.51% molecular formula for true positive annotations as the top hit and 90.58-100% within the top five hits. Molecular formula annotations were also supported by tandem mass spectrometry data. We have implemented new strategies to (1) generate formula sources and their theoretical isotopic profiles, (2) optimize the formula hits ranking for the individual and aligned peak lists, and (3) scale IDSL.UFA-based workflows for studies with larger sample sizes. Annotating the raw data for a publicly available pregnancy metabolome study using IDSL.UFA highlighted hundreds of new pregnancy-related compounds and also suggested the presence of chlorinated perfluorotriether alcohols (Cl-PFTrEAs) in human specimens. IDSL.UFA is useful for human metabolomics and exposomics studies where we need to minimize the loss of biological insights in untargeted LC/HRMS data sets. The IDSL.UFA package is available in the R CRAN repository https://cran.r-project.org/package=IDSL.UFA. Detailed documentation and tutorials are also provided at www.ufa.idsl.me.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Alcoholes , Cromatografía Liquida/métodos , Humanos , Metaboloma , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
18.
Front Cardiovasc Med ; 9: 919293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176990

RESUMEN

Pregestational diabetes (PGDM) leads to developmental impairment, especially cardiac dysfunction, in their offspring. The hyperglycemic microenvironment inside the uterus alters the cardiac plasticity characterized by electrical and structural remodeling of the heart. The altered expression of several transcription factors due to hyperglycemia during fetal development might be responsible for molecular defects and phenotypic changes in the heart. The molecular mechanism of the developmental defects in the heart due to PGDM remains unclear. To understand the molecular defects in the 2-days old neonatal rats, streptozotocin-induced diabetic female rats were bred with healthy male rats. We collected 2-day-old hearts from the neonates and identified the molecular basis for phenotypic changes. Neonates from diabetic mothers showed altered electrocardiography and echocardiography parameters. Transcriptomic profiling of the RNA-seq data revealed that several altered genes were associated with heart development, myocardial fibrosis, cardiac conduction, and cell proliferation. Histopathology data showed the presence of focal cardiac fibrosis and increased cell proliferation in neonates from diabetic mothers. Thus, our results provide a comprehensive map of the cellular events and molecular pathways perturbed in the neonatal heart during PGDM. All of the molecular and structural changes lead to developmental plasticity in neonatal rat hearts and develop cardiac anomalies in their early life.

19.
Oxid Med Cell Longev ; 2022: 5554290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35726330

RESUMEN

Objectives: Transition from cardiac hypertrophy to failure involves adverse metabolic reprogramming involving mitochondrial dysfunction. We have earlier shown that vitamin D deficiency induces heart failure, at least in part, through insulin resistance. However, whether activation of vitamin D receptor (VDR) can attenuate heart failure and underlying metabolic phenotype requires investigation. Thus, we aimed to assess the cardioprotective potential of paricalcitol, a vitamin D receptor-activator, against cardiac hypertrophy and failure in high-fat high-fructose-fed rats. Methods: Male Sprague Dawley rats were fed control (Con) or high-fat high-fructose (HFHFrD) diet for 20 weeks. After 12 weeks, rats from HFHFrD group were divided into the following: HFHFrD, HFHFrD+P (paricalcitol i.p. 0.08 µg/kg/day) and HFHFrD+E (enalapril maleate i.p. 10 mg/kg/day). Intraperitoneal glucose tolerance test, blood pressure measurement, and 2D echocardiography were performed. Cardiac fibrosis was assessed by Masson's trichrome staining of paraffin-embedded heart sections. Mitochondrial DNA and proteins, and citrate synthase activity were measured in rat hearts. VDR was silenced in H9c2 cardiomyoblasts, and immunoblotting was performed. Results: Paricalcitol improved glucose tolerance, serum lipid profile, and blood pressure in high-fat high-fructose-fed rats. Paricalcitol reduced cardiac wall thickness and increased ejection fraction in high-fat high-fructose-fed rats but had no effect on perivascular fibrosis. PGC1-α was upregulated in the HFHFrD+P group compared to the HFHFrD group, but there was no significant difference in mitochondrial content. Citrate synthase activity was significantly higher in the HFHFrD+P group compared to the HFHFrD group. Rat hearts of the HFHFrD+P group had significantly higher expression of mitofusins. H9c2 cells with VDR knockdown showed significantly lower expression of Mfn2. Improvement in the HFHFrD+P group was comparable with that in the HFHFrD+E group. Conclusions: Paricalcitol reverses cardiac dysfunction in rats with metabolic syndrome by enhancing mitochondrial fusion. We demonstrate repurposing potential of the drug currently used in end-stage kidney disease.


Asunto(s)
Insuficiencia Cardíaca , Síndrome Metabólico , Animales , Cardiomegalia , Citrato (si)-Sintasa , Ergocalciferoles , Fructosa , Insuficiencia Cardíaca/tratamiento farmacológico , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Dinámicas Mitocondriales , Ratas , Ratas Sprague-Dawley , Receptores de Calcitriol/metabolismo
20.
RSC Adv ; 12(7): 3809-3827, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425455

RESUMEN

Owing to its presence in several biological processes, Sirt1 acts as a potential therapeutic target for many diseases. Here, we report the structure-based designing and synthesis of two distinct series of novel Sirt1 inhibitors, benzimidazole mono-peptides and amino-acid derived 5-pyrazolyl methylidene rhodanine carboxylic acid. The compounds were evaluated for in vitro enzyme-based and cell-based Sirt1 inhibition assay, and cytotoxic-activity in both liver and breast cancer cells. The tryptophan conjugates i.e.13h (IC50 = 0.66 µM, ΔG bind = -1.1 kcal mol-1) and 7d (IC50 = 0.77 µM, ΔG bind = -4.4 kcal mol-1) demonstrated the maximum efficacy to inhibit Sirt1. The MD simulation unveiled that electrostatic complementarity at the substrate-binding-site through a novel motif "SLxVxP(V/F)A" could be a cause of increased Sirt1 inhibition by 13h and 13l over Sirt2 in cell-based assay, as compared to the control Ex527 and 7d. Finally, this study highlights novel molecules 7d and 13h, along with a new key hot-spot in Sirt1, which could be used as a starting lead to design more potent and selective sirtuin inhibitors as a potential anticancer molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...